
State/Status Segregation Pattern
Clarifying Lifecycle vs. Context to Build More Predictable Systems

Masoud Bahrami

mbahrami1990@gmail.com

Abstract

In complex domains, the distinction between state and status is often overlooked, leading to bloated models, brittle logic, and

unclear system behavior. This paper introduces the State/Status Segregation (S3) Pattern, a modeling principle that separates

lifecycle control (state) from contextual information (status). The result is more predictable logic, clearer APIs, and systems

that are easier to test, evolve, and reason about.

I. Introduction

Modern systems interact with rich and dynamic
domains. Yet, when it comes to modeling such
domains, developers often collapse multiple concepts,
lifecycle phase, operational condition, outcome, and
exception, into a single representation. This leads to
monolithic enumerated types(like enum in C# or factor
in R) or state machines that quickly become
unmanageable.

One of the most common and subtle design
mistakes is confusing state, which drives domain
logic, with status, which describes contextual or
operational outcomes. Though the terms are
sometimes used interchangeably in everyday
conversation, they serve fundamentally different roles
in well-designed systems. In almost every domain we
model, for every concept, there exists a lifecycle with
multiple, not necessarily sequential, steps, and
associated contextual information. Even for simple
domains, called CRUD, this notion exists. Therefore,
it’s crucial to have a means and a lens to discover and
distinguish this two different concepts. State/Status
Segregation Pattern helps us, by separating this two
concepts, to have a clear, predictable and simple
domain model.

II. What Is State?

The Oxford Dictionary defines State as follows:
“The particular condition that someone or something is in at a
specific time.”

State represents the fundamental phase or condition
of an entity at a given time, typically within a well-
defined lifecycle. It reflects where that entity stands in
terms of domain logic. State has exactly one value at
any given time, meaning an entity can be in only one
core condition or phase at once.

For example, an order can only be in one state such
as Pending, Paid or Canceled. It answers the question:
Where is this entity in its business process?

State is:

• Exclusive: Only one state is active at any
given time.

• Deterministic: State is used to determine
which transitions or operations are valid.

• Lifecycle-Oriented: State reflects the
core progress of the entity.

State provides a simple, unique, and clear model
representing the entity’s lifecycle stage.

Example:

enum OrderState {

 Draft,

 PendingPayment,

 Paid,

 Issued,

 Cancelled

}

III. What Is Status?

Status, by contrast, captures transient conditions,
results of interactions, or metadata related to the current
state. Status describes what’s happening within a state,
or what has resulted from an external interaction, such
as a payment gateway error or user cancellation. It
helps convey how the system or user experienced a
particular process step, without necessarily changing
the business phase itself.

Status describes what’s happening within a state, or
what has resulted from an external interaction. It
answers: What is currently happening or has happened
within this state?

State/Status Segregation Pattern
Masoud Bahrami

Status is:

• Non-exclusive: Multiple statuses may
coexist.

• Contextual: Status provides details,
outcomes, or side effects.

• Used for: Reporting, UX, monitoring, and
support tooling.

Status, in contrary to state, can have multiple values
simultaneously. It describes various temporary or
contextual conditions that can coexist.

For instance, an order’s status might
include Payment Gateway Active, Confirmation SMS
Sent, and Validation Warning Triggered all at the same
time.

Example:

enum OrderStatus {

 PaymentGatewayRedirected,

 PaymentTimeout,

 ConfirmationSMSSent,

 ValidationWarning

}

IV. Real-World Analogies

Consider a traveler’s route from City A to City B.
Their state might be: Decided, InTransit, Arrived, or
CancelledTrip. Their status could include:
LostLuggage, Run Out Of Gas, FeelingUnwell,
ReceivedWelcomeSMS. These contextual details
(status) do not alter the fact that the traveler is still
InTransit. They describe what’s happening, but not
where they are on the journey. State means stable
conditions and status refers to temporal conditions
related to an state.

As another example let’s take a look at the human
lifecycle. Even outside software, the distinction holds.
A person experienced different state like Child, Infant,
Teenager, Adult and … through their lifecycle. Within
each one, the person can have multiple status like
Styding, Sick and Happy.

Aspect State

(Lifecycl

e)

Status (Condition)

Person Teenager Studying, Sick, Happy

Account Active SuspendedTemporarily,

AwaitingEmailVerification

Table1: Examples of distinction between State and Status

V. Why We Get It Wrong

The confusion between state and status often
begins in conversations with domain experts. Business
people typically use rich, descriptive language that
blends lifecycle, outcomes, emotions, and
environmental factors, all in the same sentence. For
example: The order is still active, but the rider’s stuck
in traffic and the restaurant hasn’t confirmed yet. Also,
the user called and asked to change the address.

This single sentence contains a mix of lifecycle
information (e.g., order is active) and transient
operational conditions (e.g., restaurant hasn’t
confirmed, rider stuck in traffic, user called). When
developers attempt to model this type of situation in a
simple, linear data structure like enum, without
drawing a clear line between state and status, they
often fall into the trap of trying to capture everything in
a single, overloaded enum:

 enum OrderState {

 Placed,

 Preparing,

 RiderDelayed,

 RestaurantUnconfirmed,

 AddressChangeRequested,

 Delivered

 }

This might seem pragmatic at first, but it leads to
brittle and misleading models. Consider:

• RiderDelayed is not a phase in the food
delivery lifecycle, it’s an operational detail
that can occur during multiple phases. Its
appropriate state might be delivered from
restaurant by the rider or delivered to the
customer.

• RestaurantUnconfirmed is a valid status
during order preparation, but not once the
food has been picked up.

• AddressChangeRequested is a customer-side
event that might be relevant in several
different stages.

It mixes unrelated concepts into the order model.
For example, PaymentFailed isn’t actually about the
order, it’s about payment, which is one part of a larger
settlement flow. That failure might be temporary,
recoverable, and ultimately irrelevant to whether the
order gets delivered. Including it as an OrderState is a
modeling leak, it binds unrelated domains too tightly
and creates misleading implications (e.g., "an order is
in the payment failed state").

State/Status Segregation Pattern
Masoud Bahrami

Instead, a better model would represent payment as
its own bounded context, with its own lifecycle and
statuses, and link it to the order via composition:

{

 "Order": {

 "State": "Preparing",

 "Statuses": ["RiderDelayed",

"AddressChangeRequested"]

 },

 "Payment": {

 "State": "Settled",

 "Attempts": [

 { "Status": "Failed", "Time":

"12:01" },

 { "Status": "Success",

"Time": "12:03" }

]

 }

}

It treats dynamic, overlapping conditions as linear
and mutually exclusive. In real systems, multiple
statuses can exist simultaneously, and across different
phases of the order lifecycle. For example:

• A rider might be delayed during both pickup
and delivery.

• A user might request an address change while
the order is still preparing.

• The restaurant might be unconfirmed during
the early phase, and then again during a
second confirmation (e.g., after a
modification).

But enums are linear by nature. Most code
overwrites the previous value with the latest:

order.State =

OrderState.RiderDelayed;

This causes loss of critical context. If RiderDelayed
replaces AwaitingConfirmation, we now can't answer:
Where is the order in the lifecycle? Is it still being
prepared? Is it already with the rider? Is it in limbo?

This kind of ambiguity leads to downstream bugs
in business logic, UI flows, and even alerts.

By folding these contextual signals into the main
order state, we lose the ability to clearly reason about
where the order is in its journey, and what operations
are valid at that point.

A better approach is to separate state and status.
Instead, we should structure our model to separate the
order’s core lifecycle state from the dynamic statuses
that describe what's happening within that state.

A resilient model explicitly

distinguishes lifecycle state (the

what phase is this in?) from status

conditions (the what’s happening

around it?). Here’s what that looks

like in a food delivery system:

{

 "Order": {

 "State": "OutForDelivery",

 "Statuses": ["RiderDelayed",

"AddressChangeRequested"]

 },

 "Settlement": {

 "PaymentStatus": "Settled",

 "LastAttempt": {

 "Status": "Success",

 "Time": "12:03"

 }

 }

}

By applying State/Status Segregation Pattern in
modelling and designing a domain we can see that:

• State is a clean, mutually exclusive

phase in the core lifecycle.

• Statuses are optional, additive, and

transient, they come and go without

altering control flow.

• Cross-Domain Concerns (like

Payment) are modeled independently,

allowing both clean separation and

strong composition.

VI. The Problem with One-Dimensional

Thinking

When we try to capture multidimensional domain
realities with a flat enum, we lose nuance. We force
every detail, every context, emotion and outcome, into
a single category that’s supposed to control the flow.
This results in:

• Overloaded states that try to do too much.

• Rigid models that can’t evolve.

• Inconsistent behavior because different
statuses get modeled inconsistently.

Let’s go back to the example of modeling a
traveler’s route from City A to City B. If you try to
model everything about a person , life phase, mood,
employment, health with a single enum, you get
nonsense like:

State/Status Segregation Pattern
Masoud Bahrami

 enum PersonState {

 Decided_Felling_Unwell,

 InTransit_LostLuggage,

Arrived_Feeling_Unwell,

CanceledTrip_Felling_Unwell,

…

 }

This approach clearly doesn’t scale. A trip is not
one-dimensional. Neither are most business processes.

VII. Why Domain Experts Don’t Think in

Enums

Domain experts speak in layered, narrative
language. They don’t naturally separate
what’s essential (a phase of the lifecycle) from
what’s incidental or contextual (a detail or condition
within a phase). And they shouldn’t have to. To a
domain expert, that’s a perfectly coherent, meaningful
description. But it doesn’t map neatly to an enum.

They don’t naturally distinguish between what's
essential (the core lifecycle phase, like
"InPreparation") and what's contextual or incidental
(temporary flags like "address changed" or "driver
waiting"). And they shouldn’t have to; this separation
of concerns is not their job.

It’s the developer’s responsibility to distill that
narrative into a model with clean separation. Failing
to make this distinction leads to a common trap: false
states, values that look like states, but are just metadata,
flags, or status effects.

 enum OrderState {

 AwaitingPreparation,

 AddressUpdated,

 DriverWaiting,

 CustomerCancelled

 }

VIII. State Drives Logic, Status

Describes Outcomes

Understanding the different roles
of state and status is crucial when building systems that
behave predictably and scale with complexity. One
controls the flow; the other describes the experience.
Confusing them leads to fragile logic and bloated code.

State represents the core phase of an entity’s
existence. It determines what actions are
possible, what rules apply, and what the next valid
steps are. State is what the system cares about when it
needs to make decisions or enforce constraints. State is
always exclusive. An entity can only be in one state at
a time. This makes it ideal for building flow control
into your business logic.

Status, on the other hand, is more descriptive. It
tells you what’s going on within the current state, or
what external events have occurred. It doesn’t control
business rules, but it provides context, insight, and
feedback. Critically, multiple statuses can coexist,
even if only one state is active. That’s why status often
works best as a list or a set, not a single value.

Mixing these two roles leads to models that are
difficult to reason about. For instance, if you try to
encode all possible outcomes as states, you end up with
overly specific, hard-to-maintain logic like:

 enum OrderState {

 PaymentInitiated,

 PaymentFailedDueToTimeout,

 PaymentFailedDueToUserCancel,

 PaymentFailedDueToGatewayError,

 }

This makes control flow brittle and redundant.

Instead, separate concerns: Use state for what stage the
system is in. Use status to track how the system got
there or what else is going on. By making this
distinction, you’ll end up with a model that’s both
easier to extend and clearer to everyone involved, from
developers to business stakeholders.

IX. One State, Many Statuses

In well-designed systems, an entity is always in
exactly one state at any point in time. This state
represents the core phase of its lifecycle and determines
what actions are allowed or expected next. State is
exclusive and mutually defined, an order cannot be
both Paid and Cancelled, just as a user cannot be both
Active and Blocked simultaneously. Transitions
between states are not always linear or automatic, but
they must always result in exactly one valid state.

On the other hand, statuses provide contextual
details and side effects related to that state. Unlike
state, multiple statuses can be active at the same time.
For example, a user might be SMS Verified, Email
Unverified, and Recently Suspicious all at once. These
are not part of the main lifecycle, but they enrich the
understanding of the entity’s current condition.

Importantly, not every status makes sense in every
state. Some statuses are only valid or meaningful when
the entity is in certain states. For instance, a status like
Awaiting Payment Confirmation only makes sense
when the order is in a Pending or Payment Initiated
state, it would be irrelevant in a Cancelled or
Completed state.

This distinction between state and status is crucial
in software modeling. It helps define clear,
maintainable rules for transitions and validations,
ensures better separation of concerns, and enables more
expressive and accurate APIs and domain logic.

State/Status Segregation Pattern
Masoud Bahrami

X. Modeling Implications

Failing to separate state from status often results in
convoluted enums like:

enum OrderState {
 PaymentPending_GatewayRedirected,

 PaymentFailed_Timeout,

 AwaitingSupport_UserCalled

}

This pattern:

• Introduces redundancy

• Increases cognitive load

• Hinders future extension

• Leads to brittle logic

Correct Design: Separate Concerns

A more maintainable model separates the flow
controller (state) from descriptive outcomes (status):

 {

 "State": "PendingPayment",

 "Status":

["GatewayRedirected","ConfirmationS

MSSent"]

 }

Here, logic such as issuing a policy depends solely
on the state:

if (order.State == OrderState.Paid)

{

 IssuePolicy(order);

}

Statuses inform logging, diagnostics, or UI
messaging, not core control flow.

XI. Testing and Maintainability

When state controls behavior, unit tests can focus
tightly on lifecycle transitions. This leads to simple,
predictable logic:

[Test]

public void

Should_Issue_Policy_When_State_Is_P

aid()

{

 var order = new InsuranceOrder

{ State = OrderState.Paid };

Assert.True(CanIssuePolicy(order));

}

Here, we’re asserting core business rules based on
well-defined lifecycle phases. If an order is in the Paid
state, the system knows it’s ready to issue a policy, no
ambiguity, no context-switching.

Meanwhile, status can be tested more broadly,
especially in scenarios involving monitoring, alerts, or
cross-cutting concerns like customer communication
or fraud detection:

Assert.Contains(order.Statuses,

OrderStatus.PaymentTimeout);

Assert.Contains(order.Statuses,

OrderStatus.NeedsManualReview);

By modeling your system this way, you're not just
making it easier to test, you're also making it easier to
understand, reason about, and evolve. That’s the
foundation of maintainable software.

Keeping state and status separated makes unit tests
simple and maintainable, because logic under tests is
driven by core lifecycle steps. It also leads to better
traceability and observability. Also, it gives us more
resilient behavior as temporary and exceptional
conditions(status) don’t interfere with lifecycle
logic(state).

XII. The S3 Pattern

The State/Status Segregation (S3) Pattern is a
modeling strategy that offers a clear and repeatable
way to structure domain logic. It draws a sharp line
between two fundamentally different kinds of
information: state, which represents where an entity is
in its lifecycle, and status, which describes incidental
or contextual information surrounding that entity.

In this pattern, state is singular, exclusive, and
drives control flow. It determines what can and cannot
happen next. Status, on the other hand, is plural and
descriptive. It captures metadata about what is
happening, what has happened, or what conditions
exist, without dictating the core behavior of the system.

This distinction isn't cosmetic. It aligns closely with
the Single Responsibility Principle, enforces better
separation of concerns, and results in models that are
both more maintainable and more expressive.

Using the S3 Pattern helps avoid the common trap
of overloaded enums that try to do too much, enums

State/Status Segregation Pattern
Masoud Bahrami

that conflate what phase an entity is in with everything
that’s happening around it. That kind of design leads to
brittle logic, tangled if-statements, and tests that are
hard to write and even harder to trust.

By separating state from status, we create domain
models that are easier to reason about, more predictable
under change, and better aligned with how domain
experts actually talk about the system. We also gain the
ability to write simpler, more focused tests, since state
transitions are cleanly isolated from contextual effects.

When you're unsure how to model a value, ask
yourself two simple questions:

• Does this determine what can happen next? If
yes, it's state.

• Is this a detail about what has happened or
what is currently true? If yes, it's status.

Ultimately, the State/Status Segregation Pattern
gives you more than a technical distinction, it gives you
a language. A way to communicate clearly with both
stakeholders and code. A tool for designing systems
that are not only more robust, but also easier to evolve,
test, and explain.

This is what good models do: they make the
complex understandable. S3 is one of those models.
Use it well.

The table below captures the essence of the S3
Pattern by outlining the distinct roles of State and
Status. This separation provides a repeatable modeling
strategy: treat State as the authoritative indicator of an
entity’s lifecycle phase, it’s singular, mutually
exclusive, and essential for driving business logic.
Status, in contrast, is a flexible collection of contextual
markers. These may be diagnostic signals, user-facing
flags, or ephemeral conditions that support monitoring,
auditing, and UI behavior. By consistently applying
this distinction, teams can reduce ambiguity, simplify
logic, and improve communication across both code
and conversations.

Element Role

State Lifecycle phase, exclusive, drives

business logic

Status Contextual metadata, can be multiple,

supports diagnostics/UI

Table 2: The roles of State and Status in the S3 pattern

This distinction aligns with the Single
Responsibility Principle and supports scalable domain
design.

The ability to reason about a system's behavior
depends heavily on how we model its core elements.
We can use this pattern when our domain models
become cleaner and more evolvable. Also in case of
attempt to make business logic simpler and more
predictable, State/Status Segregation Pattern would be
very helpful. For example:

{

 "State": "PendingPayment",

 "Status":

["GatewayRedirected",

"SMSConfirmationSent"]

}
This structure clearly tells the story: what stage

we’re at, and what’s going on.

It’s not just a naming trick; it’s a modeling strategy.
Applying the State/Status Segregation Pattern helps
you avoid overloaded enums that mix control flow with
side effects, hidden coupling between unrelated
concerns, and logic that becomes harder to test, extend,
and explain.

XIII. Conclusion

The State/Status Segregation (S3) Pattern is more
than a naming convention or a modeling guideline, it’s
a lens for clarifying complexity in systems where
lifecycle and context often blur. By drawing a sharp
and deliberate boundary between state (what phase
something is in) and status (what conditions surround
it), the S3 Pattern empowers developers to build
software that is more resilient, testable, and expressive.

Throughout this article, we’ve explored how the
confusion between state and status leads to fragile
enums, bloated logic, and inconsistent reasoning.
We’ve seen how domain experts naturally describe
both lifecycle and operational details in a single breath,
and how developers must untangle that complexity into
clean, composable models. The S3 Pattern offers a path
forward: exclusive state to drive behavior, and additive
status to describe conditions.

This pattern is part of my upcoming book,
Language-Driven Design, which dives deeper into how
clear conceptual boundaries, rooted in language, not
just code, can guide the design of systems that mirror
the richness of their domains without collapsing under
it. S3 is one such boundary. It allows you to model
control flow without losing context, to test behavior
without modeling noise, and to evolve your systems
with confidence.

Good models tell stories. They help you explain,
test, refactor, and extend. The State/Status Segregation
Pattern doesn’t just improve your data structures, it
improves your conversations, your tests, your

State/Status Segregation Pattern
Masoud Bahrami

understanding. It’s not a rule to follow dogmatically,
but a principle to apply where clarity matters most.

As software grows more interconnected,
unpredictable, and real-time, this kind of conceptual
precision will only become more valuable. Use S3
where your models get blurry. Let it separate the
essential from the incidental. Let it guide you toward
systems that are easier to reason about, by both
machines and minds.

