
Introducing Behavior as Data Pattern
When Data Becomes Behavior

Masoud Bahrami

mbahrami1990@gmail.com

Abstract

In my experience designing complex software systems, I frequently encountered challenges where changing a

simple field value affected the overall behavior and logic of an object or module. Initially, these designs were

data-driven, meaning those values were just stored as simple fields. Over time, as different behaviors were

implemented based on those values, the code became scattered, complex, and difficult to maintain.

In this article, I introduce Behavior as Data Pattern. This pattern helps us decide when a simple field should be

transformed into a behavioral model. I will also discuss key indicators and heuristics that help both developers

and product owners recognize this need, accompanied by diverse real-world examples.

The Moment I Realized This Pattern Was Needed
In one project involving an online ordering system, during a meeting, the product manager said:

“ When users want to settle their sales orders, they must select a settlement method. The available
options include online payment, using their wallet balance, or a combination, wallet first, with the
remaining amount paid online. Some sales are configured to be settled after delivery, while others require
payment before delivery. Additionally, if a user chooses to settle the full amount using only their wallet, we
offer a cashback reward: a percentage of the total order amount is returned to their wallet as a gift.”

A simple sentence but packed with information: the main status of the order, simultaneous
temporary conditions, and even changes to order data. Initially, the status field was modeled as
an enum with many scattered conditional checks around it. Initially, we modeled the order’s status
simply as an enum:

enum SettlementMethod {

 OnlinePayment,

 WalletOnly,

 WalletThenOnline,

 PreDelivery,

 PostDelivery,

 WalletWithCashback

}

Introducing Behavior as Data Pattern
Masoud Bahrami

The code was filled with conditionals like:

if (order.SettlementMethod == SettlementMethod.WalletThenOnline) {

 PayFromWallet(order);

 PayRemainingOnline(order);

} else if (order.SettlementMethod == SettlementMethod.OnlinePayment) {

 PayOnline(order);

}

 else if (order.SettlementMethod == SettlementMethod.WalletWithCashback) {

 PayFromWallet(order);

 ApplyCashback(order);

}

// More scattered conditionals handling various statuses...

As requirements grew, these scattered conditionals became unmanageable. Changes in the status
field directly altered how the system behaved across multiple modules, leading to bugs and complexity.

These checks were scattered across payment services, billing modules, and even the order validation
flow. As new combinations were added (like “wallet, then online, but with delayed confirmation”), this enum-
based approach became fragile and hard to test.

I realized the Status field was no longer just data. It encoded complex behavior and temporary
conditions simultaneously. This insight drove us to look for a design that encapsulated these behaviors
more cleanly. In this case, I gradually realized the SettlementMethod field wasn’t just a data flag
anymore, it encoded complex, branching behaviors across the system. This was a classic case of data
pretending to be behavior.

By moving from an enum to separate behavioral classes implementing shared interfaces, we achieved
more maintainable and extensible code.

I gradually realized this data-centric model was insufficient because changing the status field directly
influenced the system’s behavior. I needed a design that cleanly encapsulated these behaviors in a
maintainable and extensible way. This realization led me to Behavior as Data Pattern.

If you're curious about why mixing state and status in the enum caused issues in the first place, check out
my State/Status Segregation Pattern. It explains how separating lifecycle state from conditional status
leads to cleaner models.

https://masoudbahrami.medium.com/dont-confuse-state-with-status-when-modeling-domain-601bc91f326a

Introducing Behavior as Data Pattern
Masoud Bahrami

Pattern Definition
The Behavior as Data pattern states:

If the value of a field affects the behavior of an object, then that field
is not just data, it should be transformed into a behavioral model.

In other words, when fields such as status, type, or any other value directly determine the system’s
logic and operations, keeping them as primitive fields leads to complexity and maintainability problems.
The solution is to introduce separate classes or interfaces modeling these distinct behaviors.

Indirection, Delegation, and the Philosophy Behind

Behavior as Data 🧠
Let’s start with a classic software principle knows as the theorem of software engineering:

“All problems in computer science can be solved by another level of

indirection.”
— David John Wheeler

Behavior as Data pattern follows this exact philosophy. Instead of hardcoding conditional logic
directly inside the domain model, we introduce a structured and testable level of indirection, often in
the form of delegation through interfaces or strategy objects.

Delegate + Indirection = Modular Behavior
This pattern leverages delegation to encapsulate behavior:

• Instead of internal decision-making, behavior is delegated to external collaborators

• This delegation is typically defined through interfaces or polymorphic contracts

• The added indirection gives us flexibility to compose or configure behavior at runtime

In essence, we replace explicit logic with implicit wiring, a powerful shift in how behavior is
organized and extended.

https://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering

Introducing Behavior as Data Pattern
Masoud Bahrami

It’s Not Just About Ifs, It’s About Behavioral Boundaries
Let’s say it more clearly: Behavior as Data doesn’t just move conditionals, it challenges your

modeling boundaries and asks:

“Am I forcing fundamentally different behaviors into a single structure, violating cohesion and clarity?”

When the answer is yes, the problem isn't just conditional bloat, it's a signal to refactor your
design into behavior-centric models.

Behavior as Data gives you a lens to recognize:

If a field’s value determines complex and diverging behavior, then that field is not just data, it represents behavior and
must be modeled as such.

Let’s Look at a Few Examples

JournalEntryType = Sales | Purchase | Adjustment
In an accounting system:

• Sales creates AR entries, records revenue, and involves a customer.

• Purchase creates AP entries, involves a vendor, and records liabilities.

• Adjustment might be internal only, involving no third party.

These aren’t just different types. They are different accounting behaviors with different rules and
interactions.

Forcing them into one class means accumulating conditionals and tangled logic.

PaymentMethodType = Wallet | Bank | Installment | Combined
In a payment system:

• Wallet may need balance checks and locking funds.

• Bank may involve real-time gateway transactions.

• Installment needs schedules, contracts, and validation flows.

• Combined may mix multiple methods atomically.

These aren’t just enum values. They are distinct payment strategies with different operational
flows.

DocumentStatus = Draft | Submitted | Approved | Archived
In a document management system:

• Draft is editable.

• Submitted triggers workflows and approvals.

Introducing Behavior as Data Pattern
Masoud Bahrami

• Archived is locked and read-only.

These are not just states. They are lifecycle stages, with transitions, permissions, and context-
specific behaviors.

Here, State Pattern becomes a concrete implementation of Behavior as Data.

Structure Over Scattering
Behavior as Data moves conditional logics to structured, explicit behavior modules, where:

• Dependencies are better managed

• Behavior becomes testable, composable, and extensible

• The domain model transforms from “a condition-checker” to “a behavior performer”

This is exactly where intentional design starts to diverge from accidental complexity.

Behavior as Data is not just a pattern. It’s a modeling insight. It helps you ask:

“Am I designing for what the system is — or just reacting to how it behaves now?”

When to Transform a Field into Behavior: Clues and

Heuristics
Determining whether a field should remain simple data or become behavior is not always obvious.

Here are key heuristics to guide developers and product owners:

• Does changing the value of this field alter the system’s logic or behavior? If yes,

consider behavioral modeling.

• Are there numerous scattered if/else or switch statements based on this

field? A sign that behavior is entangled and needs refactoring.

• Is the set of possible field values likely to grow over time? Growing sets of values

usually cause condition explosion.

Introducing Behavior as Data Pattern
Masoud Bahrami

• Is testing behavior complicated and tightly coupled to the field’s value? If tests

require complex setup or many cases because of field values, consider behavioral

modeling.

• Does this field represent an important domain concept that triggers specific

behaviors? If it triggers domain-specific processes, notifications, or rules, model it as

behavior.

Examples

1. Bank Account Currency

Before (Data-driven):

class BankAccount {

 String currency; // "USD", "EUR" // even if its type was an enum

 Money convertTo(String targetCurrency) {

 if (currency.equals("USD") && targetCurrency.equals("EUR")) { ... }

 else if (...) { ... }

 }

}

Problem: Currency conversion logic scattered and grows as currencies increase.

After (Behavior-driven):

interface Currency {

 Money convertTo(Money amount, Currency target);

}

class USD implements Currency { ... }

class EUR implements Currency { ... }

class BankAccount {

 Currency currency;

 Money convertTo(Currency target) {

 return currency.convertTo(this.balance, target);

Introducing Behavior as Data Pattern
Masoud Bahrami

 }

}

Now, currency is not just data but a behavioral model.

2. Tax Calculator

Before:

class Invoice {

 String country;

Decimal calculateTax() {

 if (country.equals("DE")) return amount * 0.19;

 if (country.equals("UK")) return amount * 0.2;

 ...

 }

}

After:

interface TaxPolicy {

 BigDecimal calculateTax(Decimal amount);

}

class GermanyTaxPolicy : TaxPolicy { ... }

class Invoice {

 TaxPolicy taxPolicy;

 Decimal calculateTax() {

 return taxPolicy.calculateTax(this.amount);

 }

}

Here, the country has become a behavioral model representing tax policy.

3. UI Button Style

Before:

Introducing Behavior as Data Pattern
Masoud Bahrami

<button class={isPrimary ? "primary" : "secondary"}>

After:

class Button {

 ButtonStyle style;

render() {

 return `<button class="${style.cssClass()}">`

 }

}

When a field influences rendering and behavior, it deserves behavioral modeling.

4. Airline Ticket Payment Methods

class PaymentMethod {

 string method; // "wallet", "bank", "installment", "combined"

}

Simple field is fine only if logic is trivial. When complex payment logic exists for each method:

interface PaymentStrategy {

 void pay(Order order);

}

class WalletPayment : PaymentStrategy { ... }

class BankPayment : PaymentStrategy { ... }

class InstallmentPayment : PaymentStrategy { ... }

class CombinedPayment : PaymentStrategy { ... }

class Order {

 PaymentStrategy paymentMethod;

 void pay() {

 paymentMethod.pay(this);

Introducing Behavior as Data Pattern
Masoud Bahrami

 }

}

Relation to State/Status Segregation Pattern (S3)
This pattern, often discussed in complex systems and featured in my upcoming book Language-Driven

Design, advocates separating status and behaviors tied to it. It complements Behavior as Data by
providing a concrete approach to managing states and their associated behaviors, reducing conditional
complexity.

Practical Advice for Teams

• Look for scattered conditionals during code reviews.

• Host modeling sessions with developers and product owners to clarify domain
concepts.

• Document domain concepts explicitly to reflect their behavioral aspects.

• Use static analysis or complexity metrics to detect conditional explosion.

Refactoring Techniques: Applying Behavior as Data
When you detect Behavior as Data, consider these steps to refactor:

1. Extract behavior logic into separate methods, classes or interfaces.

2. Replace conditional checks with polymorphism by delegating behavior to these components.

3. Swap the primitive field with an instance of the behavior model.

4. Write or update tests to cover the new behavioral abstractions.

5. Collaborate with product owners and domain experts to correctly model behaviors.

Introducing Behavior as Data Pattern
Masoud Bahrami

Behavior as Data’s Refactoring Techniques by Example (you’re right. It’s a huge

name for the section, but please be patient!!)

Problem

In many systems, developers start by storing simple field values like type, status, or mode inside an
object. Over time, these values begin influencing logic: conditional branches, business rules, rendering
decisions, etc.

At first, it seems innocent.

But soon the code becomes tangled:

• Hard to add new types without breaking old ones.

• Behavior is scattered across conditionals.

• Testing becomes harder as logic depends on raw values.

• Developers duplicate logic or forget to handle all cases.

Let’s see a concrete example.

Scenario: Journal Entry Posting (Simplified)

You’re building a basic accounting module. A JournalEntry can be of different types, for example
Sales, Purchase, or Adjustment, and each type needs to apply different logic to the accounting ledger.

Here’s how it might start out:

enum JournalEntryType {

 Sales,

 Purchase,

 Adjustment

}

class JournalEntry {

 public JournalEntryType Type { get; set; }

 public decimal Amount { get; set; }

 public void PostTo(Ledger ledger) {

 switch (Type) {

 case JournalEntryType.Sales:

 ledger.Credit("AccountsReceivable", Amount);

 ledger.Debit("Revenue", Amount);

 break;

Introducing Behavior as Data Pattern
Masoud Bahrami

 case JournalEntryType.Purchase:

 ledger.Debit("AccountsPayable", Amount);

 ledger.Credit("Cash", Amount);

 break;

 case JournalEntryType.Adjustment:

 ledger.Adjust("Suspense", Amount);

 break;

 }}}

This works, but it mixes data and behavior. What happens when you want to:

• Add Refund or Transfer?

• Change logic for Purchase without touching the rest?

• Reuse Sales behavior elsewhere.

You’re forced to touch this method every time a classic code smell.

Refactoring to Behavior as Data

✅ Step 1: Extract the Behavior

Introduce a behavioral interface:

interface IPostingBehavior {

 void Post(Ledger ledger, decimal amount);

}

interface PostingBehavior {

 void post(Ledger ledger, BigDecimal amount);

}

✅ Step 2: Implement Specific Behaviors

class SalesPosting : IPostingBehavior {

 public void Post(Ledger ledger, decimal amount) {

 ledger.Credit("AccountsReceivable", amount);

 ledger.Debit("Revenue", amount);

 }

Introducing Behavior as Data Pattern
Masoud Bahrami

}

class PurchasePosting : IPostingBehavior {

 public void Post(Ledger ledger, decimal amount) {

 ledger.Debit("AccountsPayable", amount);

 ledger.Credit("Cash", amount);

 }

}

class AdjustmentPosting : IPostingBehavior {

 public void Post(Ledger ledger, decimal amount) {

 ledger.Adjust("Suspense", amount);

 }

}

✅ Step 3: Compose the Behavior into the Data

public class JournalEntry {

 public IPostingBehavior Behavior { get; set; }

 public decimal Amount { get; set; }

public void PostTo(Ledger ledger) {

 Behavior.Post(ledger, Amount);

 }}

Now the behavior is attached to the data in a clean, composable way.

✅ Step 4: Bridge the Enum to the Behavior (Optional)

If you still receive or store entry types as an enum, you can use a factory to map them:

static class PostingBehaviorFactory {

 public static IPostingBehavior From(JournalEntryType type) =>

 type switch {

 JournalEntryType.Sales => new SalesPosting(),

 JournalEntryType.Purchase => new PurchasePosting(),

 JournalEntryType.Adjustment => new AdjustmentPosting(),

 _ => throw new NotImplementedException()

 };}

Introducing Behavior as Data Pattern
Masoud Bahrami

Usage:

var entry = new JournalEntry(amount:1000,

 behavior: PostingBehaviorFactory.From(JournalEntryType.Sales));

entry.PostTo(ledger);

✅ Final Result: Cleaner & More Flexible

• Each behavior is isolated and testable.

• New behaviors don’t affect existing code.

• No more nested if or switch.

• Data no longer drives behavior through raw values , it carries behavior.

Beyond Strategy: Other Ways to Implement Behavior

as Data
While the Strategy pattern is often the go-to implementation for Behavior as Data, it’s far from the

only option. In many systems, especially those that are domain-heavy or involve varied lifecycles, other
techniques can provide better alignment with the problem space or offer superior extensibility and
clarity.

One of the most direct alternatives is subclassing. Instead of holding a field like Type or Category
and branching logic based on it, you can represent each variant as a subclass. For instance, in a financial
domain, invoices that behave differently depending on country-specific regulations can be represented
by subclasses such as UKInvoice, GermanyInvoice, or USInvoice, all extending from a base Invoice
class. This makes each invoice's behavior explicit and type-safe, without the need to rely on switch
statements or delegated strategies.

Another powerful approach is the State pattern, which is especially useful when the field in question
is a lifecycle state, such as Draft, Submitted, or Approved. In such cases, the pattern not only replaces
branching logic with polymorphic behavior but also allows modeling of transitions between states.
Each state is encapsulated as a separate class implementing the same interface, and the object itself
maintains a reference to its current state, delegating behavior accordingly. This is ideal for workflows,
document approval systems, or any process where the meaning and consequences of state transitions
are important.

Functional languages or hybrid approaches often leverage patterns matching instead of full-blown
polymorphism. For example, in C# 8 and beyond, switch expressions allow you to model behavior
cleanly based on enum values or types. This doesn't provide the same level of encapsulation as OO

Introducing Behavior as Data Pattern
Masoud Bahrami

patterns, but it improves readability and can serve as an intermediate step toward full behavior
modeling.

In enterprise systems, it’s also common to externalize behavioral rules entirely using a rules engine.
This is particularly effective when the behavior logic is owned by business stakeholders, changes
frequently, or depends on a complex combination of conditions. Rather than writing conditional logic
in code, you define rules declaratively , either through configuration or a DSL and the rules engine
evaluates and applies them at runtime. This approach decouples domain logic from infrastructure and
allows for more agile business updates.

Plugin registries or handler maps offer yet another dynamic solution. In such setups, each behavior
(e.g., a payment processor or tax calculator) is registered in a registry or resolved through a dependency
injection container. When the system encounters a field like PaymentMethod = Bank, it dynamically
locates and executes the corresponding handler. This pattern scales well in modular architecture and is
especially useful when the number of variants is not known at compile time.

The Visitor pattern is sometimes relevant too ,  particularly when you have a fixed set of variants but
want to apply different behaviors over time, such as rendering, exporting, or validation. While it is less
common for modeling a single behavioral field, it shines when behaviors must vary based on a domain
type in multiple contexts.

Differentiation from Strategy and State Patterns
Behavior as Data is primarily a design heuristic rather than a strict structural pattern. Unlike well-

defined patterns like Strategy or State, which prescribe clear structural solutions, this pattern guides
when to apply such patterns. It prompts you to recognize when a data field should be replaced by a
behavioral model, which you can then implement using Strategy, State, or other relevant patterns.

Beyond Strategy: Other Ways to Implement Behavior

as Data

Examples

1. Subclassing

public abstract class Invoice {

 public abstract decimal CalculateTax();

}

public class UKInvoice : Invoice {

 public override decimal CalculateTax() => 0.20m;

Introducing Behavior as Data Pattern
Masoud Bahrami

}

2. State Pattern

public interface IFinancialTransactionState {

 void Post(FinancialTransaction transaction);

}

3. Pattern Matching (via switch)

public decimal Calculate(PaymentMethodType method) =>

 method switch {

 PaymentMethodType.Wallet => ...,

 _ => throw new NotImplementedException()

 };

4. Rules Engine

var policy = taxRules[region];

policy.Apply(order);

5. Plugin/Handler Registry

var handler = registry.Resolve(paymentMethod);

handler.Pay(order);

Introducing Behavior as Data Pattern
Masoud Bahrami

Summary Table

Implementation

Approach

When to Use Strengths

Strategy Pattern Swappable behaviors in a clean OO

model

Common and elegant in

OOP

Subclasses Entire object varies by behavior Direct and clear

State Pattern Lifecycle or workflow states Handles transitions well

Pattern Matching Discrete variants in FP-style code Concise and readable

Rules Engine Behavior is business-owned and

dynamic

Externalizable, configurable

Plugin Registry Extensible system with optional

behaviors

Pluggable and dynamic

Visitor Pattern Multiple behaviors on closed variants Clean separation of concern

The Last Words
Recognizing when a field is not mere data, but a behavior trigger is crucial for designing flexible,

testable, and maintainable software. The Behavior as Data pattern teaches us to separate behavior from
passive data and transform fields that drive logic into distinct behavioral models. This reduces
complexity, improves clarity, and prepares the system for future changes.

This pattern is a key part of the design philosophy explored in my upcoming book Language-
Driven Design.

Masoud Bahrami (https://MasoudBahrami.Com)

https://languagedrivendesign.com/
https://languagedrivendesign.com/
https://masoudbahrami.com/

	Introducing Behavior as Data Pattern
	The Moment I Realized This Pattern Was Needed
	Pattern Definition
	Indirection, Delegation, and the Philosophy Behind Behavior as Data 🧠
	Delegate + Indirection = Modular Behavior
	It’s Not Just About Ifs, It’s About Behavioral Boundaries
	Let’s Look at a Few Examples
	JournalEntryType = Sales | Purchase | Adjustment
	PaymentMethodType = Wallet | Bank | Installment | Combined
	DocumentStatus = Draft | Submitted | Approved | Archived

	Structure Over Scattering
	When to Transform a Field into Behavior: Clues and Heuristics
	Examples
	1. Bank Account Currency
	2. Tax Calculator

	3. UI Button Style
	4. Airline Ticket Payment Methods

	Relation to State/Status Segregation Pattern (S3)
	Practical Advice for Teams
	Refactoring Techniques: Applying Behavior as Data
	Behavior as Data’s Refactoring Techniques by Example (you’re right. It’s a huge name for the section, but please be patient!!)
	Problem
	Scenario: Journal Entry Posting (Simplified)
	Refactoring to Behavior as Data
	✅ Step 1: Extract the Behavior
	✅ Step 2: Implement Specific Behaviors
	✅ Step 3: Compose the Behavior into the Data
	✅ Step 4: Bridge the Enum to the Behavior (Optional)
	✅ Final Result: Cleaner & More Flexible

	Beyond Strategy: Other Ways to Implement Behavior as Data
	Differentiation from Strategy and State Patterns
	Beyond Strategy: Other Ways to Implement Behavior as Data
	Examples
	1. Subclassing
	2. State Pattern
	3. Pattern Matching (via switch)
	4. Rules Engine
	5. Plugin/Handler Registry

	Summary Table
	The Last Words
	Masoud Bahrami (https://MasoudBahrami.Com)

